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The Hilbert-Schmidt cohomology for the Poincare group 

Peter Basarab-Horwatht and Lutz Polleyi 
f Department of Mathematics, Bedford College, Regent's Park, London NW1, UK 
Z Institut fur Kernphysik, Technische Hochschule Darmstadt, D-6100 Darmstadt, West 
Germany 

Received 10 April 1981 

Abstract. We consider cocycles for the Poincart group P I  satisfying $ ( g k ) =  
V&(k)V,' + $(g), where V is an irreducible, strongly continuous representation of PI, 
and $(g) E B(Y&, the Hilbert-Schmidt operators on the representation space 3% of V. It is 
shown that I+II must be of the form $(g) = V,AV,' - A  with A E B(X)*.  The method can be 
extended to analyse the cocycles of products of arbitrary irreducible representations of PI, 
providing neither representation belongs to the little group of vanishing four-momentum. 

1. Introduction 

We solve problems which have their basis in quantum field theory. Our setting is a 
separable, complex Hilbert space YC upon which a connected Lie group G acts through 
an irreducible, strongly continuous unitary representation { V,: g E G}.  Kraus and 
Streater (1980) and Polley et a1 (1980) posed problems of unitary implementability of 
group actions, in certain representations of free and quasi-free systems, in terms of 
cocycles with values in the Hilbert-Schmidt operators on YC, which we denote by B (YC)z. 
More precisely, the conditions led to 

(1) a projection P which is complex-linear in YC, such that V,PV,' - P E B(YC)z and 
(2) a bounded, self-adjoint, anti-linear operator A or. Yi! such that V,A Vi'  - A  E 

B(YC)z. 
Conditions (1) and (2) express the covariance under G of certain representations 

ofhhe canonical anti-commutation and commutation relations, respectively, which are 
given by a projection P (Kraus and Streater 1980) or by a bounded, self-adjoint, 
anti-linear operator A (Polley et a1 1980). For the CAR, these include all linear 
canonical transforms of the Fock representation. For the CCR, the restriction to 
bounded A has to be removed in order to cover the general case. This is done in the 
Appendix. 

Our main result is that, for G = 91 (the PoincarC group), both P and A must be 
Hilbert-Schmidt operators for (1) and (2) to be satisfied. This means that any linear 
canonical transformation, leading us out of the Fock representation of the CAR or the 
CCR, automatically destroys PoincarC covariance. 

One can show that the function g + V,TV,' - T, where T is as defined in (1) or (2), 
is strongly Hilbert-Schmidt continuous, i.e. 11 V,TVi1 - TI12 + 0 as g + idG, where 11 112 

denotes the Hilbert-Schmidt norm. The proof of this is contained in the Appendix. 
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If we have YC = L 2 ( M ;  S ;  d p )  where M is a measure space upon which G acts 
transitively, d p  is a G-invariant measure on M, and S is a Hilbert space, then we can 
rewrite the action V,HV,' for H E  B(YC), as one of the following. 

(1) V,  0 v, on L2(M x M ;  S X '3; d p  0 d p )  when H is linear, where vg = CV.C, 
and C is a conjugation on YC, i.e. C is anti-linear and C 2  = 1. 

(2) V, 0 V, on L2(M x M ;  S x S :  d p  0 d p )  when H is anti-linear. 

2. Cocycles 

The function g + V,TV,' - T E B(YC), (we do not for the moment distinguish between 
the cases when T is linear or anti-linear) is an example of a cocycle with values in B(YC)2 
for the action V,(*)V-,'. A cocycle for the action V,(.)V,' with values in B(YC), is a 
function $ : G + B(YC)2 such that 

A cocycle $: G+B(YC)2 is said to be a true coboundary if there is an operator H E B(YC)2 
such that 

$(g) = V,HV,' - H for each g E G. 

We define the equivalence of two cocycles, and (c/* are 
cohomologous (or, equivalent; or, in the same cohomology class) if their difference is a 
true coboundary, i.e. if there is an operator H E  B(YC), such that for each g E G 

and $*, as follows. 

Our problems, therefore, become amenable to the theory of cocycles for unitary actions 
of groups, with values in a Hilbert space. Using the transformations of the action (given 
in 8 1) V,(.)V,' into either V,  0 v, or V, 0 V,, it is possible to show that the 
cohomology classes of the cocycle V,TV,' - T, where T is either a projection or an 
anti-linear operator, are in a one-to-one correspondence with certain cohomology 
classes of the cocycles: 

(1) V,  0 V,F-FE L 2 ( M x M ;  S x S ;  d p  0 d p )  if T is a projection; 
(2) V, 0 V,F - F E L2(M x M ;  S x S ;  d p  0 d p )  if T is an anti-linear operator. 

In each case, F is a linear functional on the Hilbert space. Of course, the cor- 
respondence is, in general, only into, not onto. 

We now specialise to the case where G = 9'1 ( 3  + l), the PoincarC group for 3 + 1 
space-time dimensions. Then M = R3, S = C2'+', where s is such that 2s + 1 is a positive 
integer, and d p  = d3p/(p2+ m2)'", m 5 0. V is then an irreducible representation of 
9'1 (3 + 1) on YC. Our approach now becomes the task of showing that in each case we 
have 

F E  L 2 ( R 3  x R3; e*'+' x C2'+'; d p  0 d p )  -- X 

and this proves that every cocycle considered must be a true coboundary. A by-product 
of the analysis is a method which proves the triviality of any cocycle of 9': (3 + l), for a 
tensor product of any two irreducible representations of 9'; (3 + l), provided that 
neither of them corresponds to  the case of vanishing four-momentum. 
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3. Cocycles for V O and V O V 

The tensor products V 0 v and V O V are reducible. Therefore we must examine the 
consequences of this for the cocycles of V O v and V 0 V. We have the following 
result (Parthasarathy and Schmidt 1972). 

Theorem 1. Suppose U is a continuous unitary representation of a connected Lie group 
G acting on a Hilbert space X, and that there is a standard measure a on a Bore1 space R 
such that 

U = In@ U" da(w) 

where each U" is an irreducible continuous representation of G on E", and 

X= la@ X" da(w). 

Then, if S ( g )  is a continuous cocycle of G for U, with values in E, S ( g )  can be written as 
@ 

S ( g )  = j S(w,  g )  da(w) 
n 

where S(w,  g )  is a continuous cocycle of G for U", for all w E Y, where Y c i2 with 
a (R\ Y )  = 0. 

The tensor products V 0 v and V O V have been fully analysed by Schaaf (1970). 
One has the following results. 

0 

V O  v=ln V"da(w) 

where each V" is an irreducible representation of 9'1 (3 + 1) which corresponds to the 
case of m 2  < 0 (i.e. the representations V" belong to the little group SO(2 , l )  = the 
Lorentz group in 2 + 1 space-time dimensions). This is the case when the mass carried 
by V is m S O .  

The case of V 0 V can be dealt with in the same manner: if V carries a mass m b 0 
then we obtain 

0 

V O  V = I n  V"da(w). 

In this case, each V" is an irreducible representation of 9': (3 + 1) which corresponds to 
the case of m z  > 0 (i.e. the representations V belong to the stability group SO(3)). 

and of the type m z  > 0 
for V 0 V. This is not strictly correct, as we should include, in each case, represen- 
tations which carry mass equal to zero. However, these occur with a-measure zero, so 
we may neglect them, and our analysis is true with or without taking account of them: 
we choose not to mention them beyond this remark. 

It was shown by Araki (1969/1970, theorem 7.3) that if the connected group G 
contains an abelian normal subgroup N, then any cocycle $ ( g )  may be written as 

We have stated that each V" is of the type m z  < 0 for V 0 

$ ( S I =  U P - F + $ 1 k )  
where U, is the continuous unitary representation of G, F is some vector, which may or 
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may not lie in the Hilbert space, and $l(g) is a cocycle with values in the space of vectors 
which are invariant under the action of N in the given representation. 

In our case, 9'; (3 + 1) contains the abelian normal subgroup R4, and thus each 
cocycle is decomposed in the above form. Suppose that Ccll(g) is a cocycle with values in 
the translation-invariant subspace of the Hilbert space of V 0 v or V 0 V. Then, in 
each direct integral decomposition, $ l (w ,  g) should be invariant under the action of R4 
in the representation V", for each w E R (neglecting sets of measure zero). In either 
case of V", there is no translation-invariant vector in the corresponding Hilbert space, 
apart from the zero vector. Hence, ILl(w, g) = 0 for all g E G and for each w E R, and it 
follows that the cocycles of V 0 v or V 0 V are of the form 

vg o v g ~ - ~  or V, 0 V g F - F  

for each g E 9'1 (3 + 1). Each F can be considered as a linear functional on a dense set of 
the Hilbert space X= L2(R3 x R3; C2*+l x C2'+'; d p  0 dp) .  We write 

F = In@ F" da(w)  

by which we mean 

for each vector f in the dense set of definition of F. 
Using theorem 1, we have 

V, 0 v g F  - F = ( V i F w  -F" )  d a  ( U )  In@ 

In@ 
and 

V, 0 V,F - F = ( V i F "  - F " )  da(w).  

For the case of V 0 V, each V" is a representation of 9'; (3 + 1) with mass m > 0, 
and this implies that each cocycle function F is already in the Hilbert space, i.e. 
V"F" - F" is a true coboundary. This is shown in theorem 3 of Basarab-Horwath et a1 
(1979). Hence we have that 

F = In@ F" d a  ( U )  with F" E X". 

However, this does not yet establish that 

I I F I I ~  = J I I F ~ I I ~  da(w)  
n 

is a convergent integral. We shall prove this convergence in the next section, together 
with the similar case of V 0 v. 

Before proceeding to the analysis of convergence, let us remark that for each 
continuous cocycle $ ( g )  of 9'1 (3 + 1)-or any connected Lie group G-we may choose 
a cocycle $ ' (g )  in the same cohomology class as $(g ) ,  such that @(g) is analytic at the 
identity of G. This implies, for cocycles of the type V, 0 V,F - F or V, 0 v,F - F, that 
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we may assume F to obey 

X F E X  

where X is any representative of any Lie algebra element in the Lie algebra of G. 
Moreover, for any such X of the Lie algebra, we denote by X" the corresponding 
representative in the representation V" occurring in the direct integral decomposition, 
and we then have 

0 

X F  = X"F" da(w)  

and the integral 

is convergent. 
We may assume, as well as this useful property, that each F is invariant under the 

action of SO(3). This follows from the fact that any cocycle +(g)  for a connected Lie 
group G, which also contains a compact subgroup K, is cohomologous to one which 
vanishes on the compact subgroup K. +(g) can be chosen to have both this property and 
the analyticity property. As we have remarked, this allows us to assume F to be 
invariant under the action of S0(3),  and this, in turn, implies that each F" in the direct 
integral decomposition may be assumed invariant under the action of SO(3). 

Having made these remarks, we are now able to solve our problems. 

4. Estimates for cocycle functions 

We call the objects F", such that VYF" -F" E X w  for each g E P! (3 + l), cocycle 
functions. In this section, we prove certain estimates for these functions, which then 
allow us to prove the convergence of the direct integrals. An important component in 
the proof is Redheffer's inequality (Redheffer 1970), which is 

where n is the dimension of the space on which U is defined. U is a function of the vector 
p ,  but depends only on p = IpI. K is some function such that K ' ( p )  is locally integrable. 

Proposition 1. Suppose that F is a cocycle function for the irreducible representation V 
of 9'; (3 + l), carrying mass m > 0 and spin equal to s, acting in the Hilbert space 
YL=L2(R3; CZs+l; d3p/(p2+m2)"2). Then 

where $i is the generator of Lorentz boosts in the Pth direction. 

Proof. The generators of the rotation group can be written (Beckers and Jaspers 1978) 
as 

J = -i(pxV)+S& +p3)-l(p1, p2 ,  P +PA P = IPI, 
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where S3 is the diagonal Hermitian spin operator corresponding to the spin about the 
third axis. S 3  has at most one zero eigenvalue. From the assumed rotation-invariance 
of F, we obtain 

JF=O 

and, exploiting the properties of S3, we can write F as 

F ( P )  = u(p )eo  
where eo is the zero eigenvector of S3 in the spin space CzS+l, and u ( p )  is a scalar 
function depending on p = IpI. 

In the same paper (Beckers and Jaspers 1978), the Lorentz boosts $@, p = 1,2,3, 
are given in vector form by 

~ = ~ P ~ v + P ~ P - ’ s ~ ( P + P ~ ) - ~ ( P ~ ,  - P I ,  o ) + ~ P - ~ s ~ ( P ~ P ~ ( P + P ~ ) ,  P : ( P + P ~ ) - ~ - P ,  ~ 7 2 )  

+mP-2S2(P - P % P  + P 3 ) - l ,  -P1P2(P + P 3 ) ,  -PI) 

where p o  = ( p 2  + m2)l l2  with m > 0. Of course, we assume $$E YE for B = 1,2,3. 
Using the decomposition of F in terms of U ,  we obtain 

9 ‘ 9 ~  = ipOp-l(p I V u ) e o  where 9 = p / p .  

The right-hand side is equal to (ipo du/dp)eo. Using Schwarz’s inequality, one can show 
that 

Ilb - $F1I2 6 e l19$l12. 
p = 1  

We also have the following calculations. 

I/FI12=[ ~F~2d3p / (p2+m2)1’2=4*  lu12p2dp/(p2+m2)1/2. C 
Using Redheffer’s inequality, we see that the right-hand side is dominated by the 
integral 

du r 2  2 2 
4 T  lorn i u  I P O P  dp= I 

PO 

It now follows that 

and this establishes the proposition. Note that we have used K ( p )  = p o  for the function 
K ( p )  in Redheffer’s inequality. 

Proposition 2. Suppose that F is a cocycle function for the irreducible representation V 
of S I  (3 + l), corresponding to the little group SO(2, 1)-i.e. m2 < 0. Then 

Proof. The Hilbert space of the irreducible representation is given as 

YE= L2(R3; M ;  8 ( l p / 2  -@2) ( lp12  - @2)-1/2 d3p) 
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where M is a Hilbert space, P 2  = -m2 and 8 is the Heaviside distribution. We shall use 
Redheffer's inequality, and for the function K ( p )  we choose 

W P )  = e(/p/2-p2)(lp12-p2)1/2 

J" = NI PI2 - P 2 N  PI2 - P2)-1/2 + 21 PI(1 PI2 - P 2 ) 1 / 2  8 (I PI2 - P 2 )  
and this gives us 

2 -1/2 
= e(lpI2-P2)(lpl2-P ) . 

For this case of V, the generators of the rotations are given by (see Beckers and Jaspers 
1978) 

J = -i(p x V) + s ~ ( P ~ ( P  + p 3 ) - ' ,  P A P  +p3) - ' ,  1). 

Using the assumed rotation-invariance of the cocycle function F, we obtain, as in 
proposition 1, that we may write F ( p )  = u(lpl)eo,  where eo is the eigenvector of S3 
belonging to the eigenvalue zero. 

The generators for the boosts are written as 

9 = ipov + S ~ P ~ P ( P  + p 3 ) - ' ( P 2 ,  - P I ,  o)+ mRlp-'(p - P : ( P  +p3) - ' ,  - p m ( p  + P A  - P I )  

+ m R d ( - p l p z ( p  +p3) - ' ,  P - P : ( P  + p 3 ) ,  -p2)  

where R1 and R2 are the representations of the boosts of SO(2, 1) in the space M. 
Another calculation shows that 

B 0 $ W p )  = ipo(du/dp)eo where B = p / p .  

The argument now proceeds as in proposition 1, so that we obtain the same desired 
result: 

This establishes the proposition. 

A by-product of proposition 2 is that the irreducible, space-like representations of 
53'; (3 + 1) have only true coboundaries as cocycles. The analogous result for time-like 
representations of S1(3 + 1) was shown in the article Basarab-Horwath et a1 (1979). 

5. Convergence of integrals 

We now turn to the equation 
0 

XF = Ja X"F" da(w)  

given at the end of § 3 .  As remarked, this integral converges, i.e. 

I J x F ~ ~ '  = ~ / X " F " / \ ~  da ( U )  < CO 
R 

where X is some generator, for either the representation V 0 or V 0 V, of a 
one-parameter group of 9': (3 + l ) ,  and X "  is the corresponding generator for V", in 
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the direct-integral decomposition. In particular, this is true for the generators of the 
boosts, i.e. 

9; is the generator of the boosts in the p direction for the representation V". 
Using the reults of proposition 1 and proposition 2, we have 

IIF"1l2~ i l19;F"l12 (almost-everywhere a )  
p = 1  

and this implies that 

l/F"1I2 d a ( w )  9 Il9P"ll' da(w)  < W. 
P = l  n 

From this it follows that if F satisfies either V, 0 vgF - F E %! or V, 0 V,F - F E 2 
where X= L2(R3 x R3; M x M ;  d p  0 d p )  and g E P l ( 3  + l), then we must have F E R. 

It now follows, from our remarks about cocycles $ ( g )  for 91 (3 + l), with values in 
the Hilbert space R, for the representations V 0 v or V 0 V, that every such cocycle is 
a true coboundary. In particular, it follows that if P is a projection with 

V,PV,' - P E  B(YC)2 

then P E  B(YC)2, and if A is self-adjoint and anti-linear, with 

V,A Vi' - A  E B (?")2, 

then A E B(YLl2. 
We remark that our methods can be used to prove that cocycles of P I  (3 + 1) for the 

representation V' 0 V 2  are all true coboundaries. Here, V' and V 2  are both irre- 
ducible unitary representations of P I  (3 + 1) which do not correspond to the case of 
vanishing four-momentum. This is because the direct-integral decomposition of 
V' 0 V 2  only contains (up to measure zero) irreducible representations for m 2  < 0 and 
m2 > 0. Therefore our estimates are appropriate. 

6. An alternative proof of the basic inequality 

In the previous sections, the inequaiity 

was proved in a direct way, for rotationally invariant distributions U acting on 
representation spaces of V 0 v and V 0 V. In this section, we want to sketch a less 
direct proof of the inequality, which is, however, valid for non-rotationally invariant U 

as well. Indeed, (*) can be traced back to the fact that only the principal series 
representation of the Lorentz subgroup of P I  (3 + 1) is contained in V 0 v and V 0 V. 
This is known to be true for all irreducible representations V of 91 (3 + 1) with mass 
m > 0 (Joos 1962) and mass m = 0 with discrete spin (Zmuidzinas (1966) treats spin 
s = 0, but this is not difficult to generalise to spin s # 0) .  Furthermore, the complex 
conjugation operator transforms the principal series representation into one which is 
unitarily equivalent to it (see the explicit construction by Naimark (1964a)), so that 
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and V are unitarily equivalent when regarded as representations of the Lorentz 
subgroup. According to Naimark (1964b), the direct product of two representations of 
the principal series type for SL(2, @) contains only the principal series. We now exploit 
the Casimir operator J?2-52 of SL(2,C). In a principal series representation, this 
operator acts as a real number A > 1 (Naimark 1964a). Thus, in a direct integral of 
principal series representations, we have that 

J?2 3 1 + J 2  3 3 

and this is the desired inequality. However, it is not known whether this inequality will 
extend the method to products of arbitrary irreducible representations of 9’; (3 + l ) ,  as 
does the method using the estimates of propositions 1 and 2. 
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Appendix 

In a symplectically transformed Fock representation, the Weyl operators are given by 
W(f) = WF(Tf), WF denoting the usual Fock Weyl operator. PoincarC transformations 
act in accordance with the rule V,W(f)Ug = W(V,f). However, this definition runs 
into inconsistencies unless V,9= c (the domain of the operator T ) .  Therefore, we 
must include this condition in the definition of PoincarC covariance. 

It is known (Polley et a1 1980) that PoincarC covariance implies implementability of 
the symplectic operator V.TV;T-l ,  and that, without loss of generality, T can be 
chosen to be in standard form T = exp A, where A is anti-linear, self-adjoint, and has 
pure point spectrum. Then V,TVz = exp( V,AVi ). Since V,gT c aT, we also have 
V g 9 ~  c 9 A .  This is all that is needed to prove the ‘only if’ part of theorem 1 of the 
above-mentioned paper-including the case of unbounded A.  As a result, A, = 
V,A Vi’ - A  E B(Y& is a necessary condition for the covariance of the CCR represen- 
tation fixed by A.  It is, however, not a sufficient condition, so that the correspondence 
of the cohomology of cocycles A ,  with the equivalence of CCR representations breaks 
down if A is unbounded. This does not affect the main conclusions of this paper since 
we derive the result A E B(YL), from the condition A ,  E B(YC), without using CCR 

representations. 
We now show how to prove that, even if A is unbounded, the cocycle A, is still 

strongly continuous in the Hilbert-Schmidt norm. We note that we may reduce the case 
to A being linear and self-adjoint, since if A is anti-linear one can choose a conjugation 
C so that AC = CA, and this makes AC self-adjoint and linear (see Polley et a1 1980). 
One can use the spectral theorem to show that ( h ;  A g f )  is measurable in g, being the 
pointwise limit of measurable functions, where f E GBA and h E YC. Further, i f f  E YC then 
there exists a sequence { f n }  c GBA so that limn.+oo fn =f, whence 
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so that for all h, f~ YL, the function ( h ;  A g f )  is measurable. Suppose now that H E  
B(YL)2; then we have for the inner product in B(YL)z of H with A,  

where { e k }  is an orthonormal basis in YL. It now follows that g H (H, A& is measurable, 
being the pointwise limit of measurable functions. So g-A,  is a B(Y& weakly 
measurable function. Now it follows from theorem 6.3 of Araki (1969/1970) that 
g H A ,  is a B(YC), strongly continuous cocycle. This proves the contention made in the 
introduction to this article, and our assumptions are justified. 
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